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Properties of and Generalized Full-
Wave Transmission Line Models for
Hybrid (Bi)(an)isotropic Waveguides
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Abstract— In this contribution single and coupled equivalent
transmission lines are developed for the propagation of modes
in reciprocal and nonreciprocal, anisotropic, bi-isotropic, and bi-
anisotropic waveguides. The transmission lines are described by
the generalized telegrapher’s equations. In order to develop these
transmission line models some properties, related to reciprocity,
bi-directionality, and mirroring, of general waveguides and gen-
eralized transmission lines are investigated. The transmission line
models are based on the reciprocity theorem and are valid for
arbitrary frequencies.

I. INTRODUCTION

HE representation of the propagation of modes in a
waveguide by a transmission line in a circuit represen-
tation is in use for a very long time. For TEM-waveguides,
such as the coaxial cable, this transmission line representa-
tion follows immediately from the Maxwell equations as is
shown in every basic electromagnetics course. Later [1], it
was shown that at low frequencies, i.e., in the quasi-TEM
limit, the transmission line representation is still equivalent
to the propagation of eigenmodes in hybrid multiconductor
waveguides. These hybrid waveguides are nonhomogeneous
and hence do not propagate pure TEM modes. With the appli-
cation of the microstrip line at higher frequencies, where the
quasi-TEM assumption becomes questionable, the need arose
for transmission line models valid at arbitrary frequencies.
Many different solutions for this problem were put forward
in the past. We refer the reader to [2] for an extensive
overview. However, all of these transmission line models
were based on the assumption that the same power has to
be transported in the transmission line as in the waveguide.
In [3], it was shown that this causes inconsistencies for
lossy waveguides. Reciprocal waveguides were represented
by nonreciprocal transmission lines. In [3], new types of
transmission line models were proposed based on the Lorentz
reciprocity principle rather than on the power assumption.
Under this assumption the conservation of reciprocity was
automatically guaranteed. These transmission line models were
then successfully extended to incorporate the influence of
externally impinging waves on the waveguide [4] or to the
interconnection of different waveguides [5]. They were in
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particular applied to wire transmission lines for power lines
[6]. It has to be mentioned also that in [3] the concept
of transmission line modeling, which was classically only
used for multiconductor transmission lines, was extended to
incorporate dielectric and optical waveguides.

The representation of for example a microstrip on a biased
and hence nonreciprocal ferrite substrate by a classical trans-
mission line causes problems. Indeed a classical transmission
line is traditional mirroring and bi-directional [7]. This means
that for each mode propagating in one direction there is
a mode propagating in the other direction with the same
propagation constant (bi-directional) and with the same modal
voltages and currents (mirroring). Remark that our definition
of bi-directionality differs from the one used in [7] where
bi-directionality was reserved for mirroring waveguides. A
glossary defining terms can be found in Appendix A. In
the ferrite situation this is no longer the case. In order to
correctly represent this nonreciprocal waveguide we need
a generalized transmission line. As we will show in this
paper these problems are not restricted to nonreciprocal wave-
guides but similar problems also occur in certain anisotropic
reciprocal waveguides. Again, these waveguides need a gen-
eralized transmission line concept. Generalized transmission
line concepts also come into play when there are bi-isotropic
or bi-anisotropic materials involved in the waveguides. Since
they are important in the optical frequency range and recently
also got a lot of attention in the microwave frequency range,
we will also include them in this paper. In [8] and [9] the
quasi-TEM theory of [1] was generalized to multiconductor
transmission lines in bi-anisotropic inhomogeneous media.
It was shown that the generalized transmission line concept
rigorously followed from the Maxwell equations under the
quasi-TEM assumption.

In this contribution, we will extend the high-frequency
transmission line models developed in [3] to generalized
transmission lines. First, this will require a study of some
aspects of reciprocal and nonreciprocal waveguides and gen-
eralized transmission lines. In particular, the problem of bi-
directionality of reciprocal waveguides will be addressed and
a proof will be given that reciprocal waveguides are bi-
directional although they are not necessary mirroring waveg-
uides. In the previous literature it was almost assumed evident
that a reciprocal waveguide is bi-directional although, in the
most general case, this does not follow immediately from
Maxwell’s equations. In tracing back literature we encoun-
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tered [10} and [11] where a proof was given based on a
network concept for nonreciprocal gyrotropic and anisotropic
media. In the sequel we will comment on that proof. For
nonreciprocal waveguides and transmission lines the concept
of adjoint waveguides and transmission lines is studied. Also
in the first part of the paper the problem of the nonmirroring
property of bi-directional or mutual bi-directional waveguides
is investigated and a relation is constructed between the
modal profiles of two oppositely propagating modes with the
same propagation constant in a waveguide as well as on a
transmission line.

In the second part of the paper the attention goes to
the construction of the actual generalized transmission line
models. First, generalized single transmission line models

for reciprocal and nonreciprocal waveguides are constructed.

These transmission line models are based on the Lorentz
reciprocity theorem. One of the particular problems in these
models is the fixation of the amplitudes of the modes in the
waveguide and the transmission line. This problem has already
been studied in [12] for the plane wave propagation of waves
in nonreciprocal bi-anisotropic materials. Throughout this pa-
per we will call this fixation of the amplitudes normalization.
Care should however be taken with this normalization because,
as in [3] and [12], we will use a reciprocity integral for
this normalization which is not a norm in the mathematical
sense of the word. In the last part of the paper generalized
coupled transmission line models are studied. In this case,
however, we will not be able to give closed form expressions
for the transmission line parameters as a function of waveguide
quantities. We have to restrict ourselves to implicit formulas
which require numerical solutions.

In [2] and [3], different transmission line models were
introduced based on the assumption that the current or the
voltage in the transmission line has a physical meaning. The
terms RI-model and RV-model were introduced in [3] to make
the distinction between these current and voltage models,
respectively. The “R” indicates that the models are not based
on power but rather on reciprocity. In [3], also more general
models, applicable for optical and dielectric waveguides were
introduced. In this paper we will restrict ourselves to RI-
models, the extension to the RV-models is straightforward.

II. RECIPROCITY AND BI-DIRECTIONALITY

If [e4(r), hy(r)] and [&,(r), hy(r)] are two solutions of the
Maxwell equations in a source free volume V then they satisfy
the Lorentz reciprocity theorem

/ [ha(r) X &(r) — By(r) X ea(r)undS =0 (1)
8V

where 6V is the boundary surface of this volume V' and where
u, is the external normal on this surface. This reciprocity
theorem is also valid in nonreciprocal media if the solution
[65(r), hy(r)], indicated by a tilde, is a solution of the Maxwell
equations in the adjoint medium in the volume V. The theorem
is easily checked and is a generalization of the one presented
in [13] or [14]. The adjoint medium has reciprocal material
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parameters compared to the original medium
e=e, @
=R, 3)
§=-C" @
and 3
(=-¢" 3)

where the constitutive equations for a general bi-anisotropic
medium are cast in the form

d(r) =%-e(r) + & - h(r), ©6)
b(r) =C-e(r) + & h(r). (7

Assume that the a-field is an eigenmode propagating along the
z-axis with propagation constant 7, in a hybrid waveguide.
The modal field can be written as

e.(r) =E.(7, y) exp (—7a2), ®)
ha(r) :Ha($7 y) €Xp (_’Yaz)- )]

where E,(z, y) and H,(z, y) are the modal field patterns.
Similarly assume that the b-field is an eigenmode propagat-
ing in the adjoint waveguide with propagation constant 4.
Applying the Lorentz reciprocity theorem (1) to a section of
arbitrary length L of the waveguide between z =0 and z = L
for these modes, results in

{1~ exp [~(7a + 50)L]} / [H,..(z, y) x Bop(z, v)

~H, b(x, y) X B¢ o(2, y)]u,dS =0 (10)
where u, is the z-directed unit vector and where the subscript
“t” denotes the transverse components, i.e., the components
in the cross-section S of the waveguide. The relation (10)
is the generalized orthogonality relation for eigenmodes in
reciprocal and nonreciprocal bi-anisotropic waveguides. The
relation states that when vy, # —*; the integral has to be zero.

It is easy to show, by reversing the z-axis in Maxwell’s
equations, for anisotropic waveguide that when -y, is a prop-
agation constant of an eigenmode that there is an eigenmode
with propagation constant —<, propagating in the opposite
direction. In general one automatically accepts that this bi-
directionality property can be generalized to arbitrary recip-
rocal bi-anisotropic waveguides. However, it is not possible
to show this property immediately from Maxwell’s equations
by reversing the z-axis (see also next section). In this section
we will give a short proof based on the Lorentz reciprocity
theorem (10). We will prove that the original waveguide and
the adjoint waveguide are mutual bi-directional. This means
that if +, is a propagation copstant that 4, = —v, is also a
propagation constant in the adjoint waveguide.

First, assume a hybrid waveguide consisting of isotropic
material. From Maxwell’s equations it follows immediately, by
reversing the z-axis, that if [v,, 0, Hz a,0(2, ¥), Et,4,0(2, ¥)]
is an e:igenmode~ that also [Y5,0 = —7a,0, He,p,0(%, ¥) =
—H: o, 0(z, ¥), Bt 5,0(z, ¥) = By o,0(, ¥)] is an eigenmode.
Inserting these equations in (10) shows of course that the factor
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in front of the integral vanishes and that we can choose the
amplitude of the ¢ mode such that

1 / [H: o 0(z, y) X Et 4,0z, y)]u,dS = 1. (1)
S

Now change the isotropic material parameters in such a
way that they become slightly bi-anisotropic. The material
parameters of the adjoint waveguide are changed accordingly.
This will change the field patterns and propagation constants
of both the a and b modes by a small amount. We write these
modes as [Ya1 = Ya.0 + 07a,1- Heo1(2. ¥) = Hi oz, y) +
§Hta1(x, 4), Era1(®, y) = Et a0z, y)+6Be,1(z, y)] and
o1 = —Ya0 + 89,1, Hepi(z, y) = —Heaolz, y) +
6Hep 1 (2, y), B (e, y) = Brao(z, y) +6Ews1(z, y)] In-
serting these modes in (10) results after a few calculations
in

{1~ exp[(87a,1 + 69,1) L]}
X {4 + / (8Hp a1 X Etpo — Hipo X 6E¢a,1) 1. dS
s

+/ (Ht,a,O X 5Et,b,1 — 6]?11;.(,,1 X tha’g).uz ds
S

+ / (6H; o1 X 0B 51 — Hyp1 X 6Epq1)0, ds] =0.
S
(12)

When the material parameters are only slightly changed, the
second factor in this expression will not vanish because, except
for the fixed term “4,” the other terms in the second factor are
at least of first order in the changes. This means that the first
factor has to be zero, which in turn means that 6v,,1 = —6%.1
or that v4 1 = —¥ 1.

In a next step we start from the “a, 1” and “b, 1” modes.
First we choose the amplitudes of the modes again such that

% / [Ht’a,l(l', y) X Et,b,l('T? y)
S

—Hip1(z, y) X Ergi(z, y)u.dS=1.  (13)

Now we can again change the material parameters by a small
amount and proceed as in (12). By repeating this process over
and over one proves that a bi-anisotropic waveguide and his
adjoint waveguide are mutual bi-directional or in particular
that a reciprocal waveguide is bi-directional.

One could argue why not just take a finite piece of the
reciprocal waveguide and consider the two ends of the guide
as ports to a microwave network as suggested in [10]. Then
attach to one port a transmitter and to the other port a receiver.
The transmitter should convert a voltage or current in a lumped
element to a single mode in the waveguide and vice versa for
the receiver. In a next step both the transmitter and receiver
are interchanged and then from the argument that the same
voltage or current is recorded in the receiver it follows that
the propagation constants are opposite according to [10]. The
problem in this setup is that, as we will discuss in the next
section, the modes propagating in opposite direction can have
totally different modal field profiles. The used transmitter
in the setup however should generate only one mode when
connected to the left and to the right hand side. It may be that
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such a transmitter could be conceived but it is certainly not
evident. If the transmitter generates more than one mode then
it is also not evident to draw conclusions regarding one mode.
This discussion puts at least some questions on the proof in
[10]. Remark that the proof in [10] is also restricted to closed
waveguides and gyrotropic anisotropic materials. Our proof
has no need to introduce some network element and follows
directly from Maxwell’s equations via the reciprocity theorem.
Since only the reciprocity theorem is involved the proof
applies to all mutual reciprocal linear eigenvalue systems.

III. RELATION BETWEEN THE MODAL FIELD PATTERNS

In an isotropic waveguide we know that the modal field
patterns of two oppositely propagating modes, with the same
propagation constant, are what we will call mirror images. In-
deed, it can be easily checked that the transformation formulas

Rt f
E; — Ey,
k., —-E,,
H; — —H;,

H. —H,. 14)

transform the Maxwell curl equations into themselves. Now
we wonder for which bi-anisotropic waveguides this mirror
property remains valid. Let us start from the transversal and
longitudinal part of the Maxwell curl equations for the modal
field patterns in a general bi-anisotropic waveguide

Vi x E;
= —jwpzHu, — jwl Eu, — jop,, - Hy
— Jwly - By, (15)
—yu, x E; +V, x E,u,
= —jwiy - H — jwCy - By — jwp, H,
- jwls E, (16)
V:x H;
= jwez Bou, + jwé. Hou, + jwe - By
+ jwé.; - Hy, 7
-y, X Hy + V, X H,u,
= jwer - B¢y + jwat -H + jwe B,
+ jwé . H. (18)
The material dyadics are decomposed as
0= 0,,0,u, + W0, + apU, + Oy (19

with « equal to €, u, ¢, or £. If we insert the mirror transfor-
mation formulas in these equations then the same equations
are obtained only for materials for which

€: =€ =0 (20
Poz =psy = 0 2D
Cu=E:=0 (22)
and
Cez =&z = 0. (23)
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Fig. 1. A microstrip line on an anisotropic substrate with a symmetry line
in its cross-section. The hatch-direction indicates the direction of anisotropy.
Cross-hatched regions are perfect conductors.

It is clear that these material conditions have nothing what-
soever to do with the reciprocity conditions. In particular this
means that certain nonreciprocal waveguides are mitroring and
conversely that the modal field patterns of oppositely propa-
gating modes in certain reciprocal waveguides are not just
mirror images. An important special case of such a reciprocal
waveguide is a waveguide consisting of reciprocal bi-isotropic,
i.e., chiral, material. We will call a waveguide which satisfies
the conditions (20)—~(23) a mirroring waveguide. For each
nonmirroring waveguide there exists a waveguide which is a
mutually mirror waveguide. The material parameters, indicated
by a hat, of this waveguide are given by

% =€,,U,U; + U, €, + &,u; + %tt

=€y U U, — W€ — €U + Etta 24)
B = [z + Waflyy + fle, g + [y

= U Uy — Ug by — My, 0, + ﬁtn ‘ (25)
E = gzzuzuz + uzgzt + étzuz + Ett

= —gzzuzuz + uzgzt + gtzuz - th (26)
Z =(zzu,u; + uz&;t + &tzuz + Ztt

= _szuzuz + uZCzt + (tzuz - —C_tt' (27)

Again, when these material parameters coincide with the ma-
terial parameters of the adjoint waveguide for a nonreciprocal
waveguide then there is a mirror relation between a mode prop-
agating in the original waveguide and the corresponding mode
propagating in opposite direction in the adjoint waveguide.

Sometimes there exists a simple relation between modes
propagating in opposite directions due to symmetry in the
geometry of the waveguide. For example when the geometry
contains a symmetry axis in its cross-section [7]. If one just
turns around the waveguide by 180° along this axis, chosen in
one particular cross-section, the same waveguide is obtained.
This means that the oppositely propagating modes are related
to each other by the symmetry of the waveguide. Fig. 1 shows
and example of such a waveguide consisting of a microstrip
line. This means also that nonreciprocal bi-anisotropic waveg-
uides become bi-directional as soon as they have a symmetry
axis in their cross-section. Similar conclusions can be drawn
when the cross-section of the waveguide contains a symmetry
center.

One could ask if there exists a natural relation between the
field patterns of modes propagating in opposite direction with
the same propagation constant in the adjoint waveguide. The
answer is that one can indeed construct such a relation but
that it is far from trivial. For a solution [vy,, Bt o, He ,] we
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can formally write the eigensystem (15)—(18), by eliminating

the z-components, as
" E:q L11 212 Ei.
¢ Htaa L21 L22 Ht,a
where i]—, (¢, § = 1, 2) are complicated two-dimensional (2-
D) dyadic vector operators. For explicit expressions for chiral
materials we refer to Appendix B. A solution (75, E; p, Hy ]
of the adjoint waveguide satisfies

5 (Et b) _[Lun L (]?t,b )

H:p Tor Ly ) \Hip
where the operators L;; are obtained from the operators L,;
by replacing the material parameters with the adjoint material
parameters (2)-(5). Now we impose a linear operator relation
between each solution [v,,E; 4, Hy,] in the original wave-

guide and the corresponding solution [§, = —va, E¢p, Hyp)
in the adjoint waveguide

B\ _ (2 B (B
Ht,b C D Ht,a
where _—A, ﬁ, 5, and D are linear dyadic operators. If one

inserts this in both sides of the adjoint eigensystem (29) and
demands that the result reduces to the original eigensystem

then one finds
zll zlz ( B) (Eta) _
Loy La ¢ D Hia
A B Et,a
O D Ht,a ’
If this has to be valid for all eigenmodes in the original

waveguide then this means that we can write the following
operator equation

_ Z_ ? f11 ilz

We also demand that the linear transformation (30) is an

involution
A 4 BY_(U 0o
C D C D 0 U

where the dyadic operators U are unit operators. The solution
of this set of operator equations (32) and (33) is difficult. In
Appendix B the way to construct a solution is indicated for
the special case of a chiral waveguide.

(28)

(29)

(30)

il

(3hH

N
il
s
88
SN———
N
Qll>]
S|

(32)

[is]]
|

(33)

IV. GENERALIZED TRANSMISSION LINES

A coupled set of N generalized transmission lines is de-
scribed by the generalized telegrapher’s equations

) Fugs) T, G4
dld(:) Yv(z) ( z) (35
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where v(z) and i(z) are column matrices with the' N voltages
and_currents of the different lines. The N X N matrices
Z,Y, P, and Q are the transmission line parameters. The
properties of losslessness and reciprocity are discussed in [8].
In particular it was shown that these transmission lines are
reciprocal when Z = Z7, Y =Y T, and P = Q7.

Suppose that [v4(2), i,(#)] is a solution of the transmission
line (34) and (35) and suppose that [Vy(z), ip(2)] is an
independent solution of the adjoint transmission line. The
adjoint transmission line has parameters given by

Z=77 (36)

V=77 (37)

P=-Q7 (38)
and ~

Q=-PT ' (39)

It is now easy to verify that the following relation holds
between the a and b solution in each source free region of
the original and adjoint transmission line

d
dz
This is the equivalent, although in differential form, for
transmission lines of the Lorentz reciprocity relation (1) for
waveguides.
Assume that the ¢ solution is a mode with propagation
constant -y, in the set of transmission lines described by

lia T (2)94(2) = 1 F (2)va(2)] = 0. (40)

4D
42)

Va(z) = Va €Xp (—’Ya,z)a
ifl(z) =1, exp(—.2)

where V, and I, are the modal voltage and current patterns.
Similarly let the b solution be a mode propagating in the
adjoint set of transmission lines with propagation constant ;.
Expanding (40) for these modal solutions and integrating from
z = 0 to z = L along the transmission lines results in

{1-exp[—(va + W)LV, V) =0, @3)

This relation is the bi-orthogonality relation for modes in
generalized transmission lines. If v, # —4, then the second
factor in (43) has to be zero.

If the modal representations (41) and (42) are inserted in
(34) and (35) then the following linear eigenvalue system is
obtained for the modes

0 P Z\ (V.
~Ya =—|{= = . 44
(n)=-F O)
The corresponding eigenvalue equation is given by
P2l _7
det =% = =]=0 45
° < v Q- %U) @)

where U is the N x N unit matrix. Now by some matrix
manipulations it is easy to show that (45) also implies that

AS
7a0T) =0

0T
det ( Q_t%U

= (46)
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This proves that the original and adjoint set of transmission
lines are mutual bi-directional and in particular, corresponding
to the result in [8], that reciprocal generalized transmission
lines are bi-directional.

In general it can be checked, as for the waveguides, that the
modal voltages and currents of a mode and the voltages and
currents of the corresponding mode in the adjoint waveguide
with the same propagation constant but propagating in the
opposite direction are not just mirror images. They are mirror
images only under the conditions that

Z=2", 47)

y=YT (48)
and

Q=P". (49)

For reciprocal transmission lines this means that P and Q
vanish or that the transmission lines reduce to ordinary trans-
mission lines.

Again, the question arises if one can construct a natural lin-
ear relation between the modal voltages and currents of these
oppositely propagating modes when the relations (47)—(49) are
not satisfied. This relation can be written as

?b — E E Va
Ib U D_ Ia
for all modes a and corresponding modes b with 4, = —~,. If

one inserts this in both sides of the adjoint eigenvalue system
of (44) and demand that this reduces to the original eigenvalue

system (44) then one finds
_§T 2T E Vo) _
yr -pT DJ\L ]
e (A BY (Ve
Ya C D I,
for all modes a. Using the diagonalization of the matrix
P Z
Y @
it is easy to show that (51) can be written compactly as
-Q" Z'\(4 B)_
vr pr)\e D)~
(4 B\ (L Z
C D)\Y Q)

Further we demand that the transformation (50) is an involu-

tion, i.e.,
4 BY(4 BY_(T o
C DJ\C D) \o U/}
The analytical solution of the system of (53) and (54) is rather

cumbersome and is discussed in Appendix C. Let us look here
at two special cases.

(50)

Qll|

<

(1)

(52)

(53)

(54)
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The solution for a single generalized transmission line is
easily found

A=-D
Y+Z
Y e GEE (53)
and
B=C
- P-Q
BN TV L 0

where we had the freedom to choose B = (. Remark that
when P = (Q = 0 the mirror transformation for the modal
currents and voltages is recovered.

As second special case we consider the perturbation solution
for a generalized transmission line with small parameters P
and Q, i.e., with P = 6P and Q = 6Q and 7 and Z symmetries.
Since the solution for P=Q=0is given by A =-D=U
and B = C = 0 the solution for small 6P and 5Q will be of
the form A = U +6A4, D= —~U+6D, B=6B and C = 6C.
If we insert these forms in (54) and keep only first order terms
one finds already that A = §D = 0. Equation (53) yields

§Q0 —6P =Y 6B+6CZ (57)

and

6Q - 8PT =Y 6BT +6CTZ. (58)
By adding and subtracting these equations one concludes that
the asymmetric parts of 6B and 6C vanish and that the
symmetric parts, indicated by a subscript “S,” satisfy

6Q —§PT =6CsZ +Y 6Bs. (59)

This is a linear set of N? equations with N2 + N unknowns.
The N degrees of freedom left can be chosen at will, for
example one could choose the same eigenvalues for §B and
6C.

From the general case discussed in Appendix C we can
draw the following conclusions. The system (53) and (54) has
still N degrees of freedom left, the matrices B and C are
symmetric matrices and D = —A7T.

V. TRANSMISSION LINE MODELS

By comparing previous sections a large analogy between
the modes in a waveguide and the modes in a coupled set of
transmission lines becomes apparent. Our aim is to construct a
transmission line model which as good as possible represents
the propagation of a certain number of modes in a waveguide.
In [3], transmission line models were constructed for modes
in reciprocal mirroring anisotropic waveguides. Now we want
to extend these models to general not necessary reciprocal bi-
anisotropic waveguides. To understand the full background of
these transmission line models the reader is referred to [3]. The
main point in [3] was that transmission line models should
be based on reciprocity rather than on power assumptions.
Indeed it was shown in [3], that power based transmission
line models for lossy reciprocal waveguides are nonreciprocal
which is intolerable.
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Fig. 2. A microstrip line with asymmetric trapezoidal cross-section.

In [3], different possible transmission line models were
constructed such as RI-models, RV-models and more funda-
mental models taking into account the true interaction with the
generator and receiver. Here we will concentrate ourselves on
RI-models, i.e., transmission line models where the currents in
the transmission lines correspond to currents in the waveguide.
The other models are easily deduced from the Rl-model as
in [3]. Although we will concentrate on the RI-model for
multiconductor waveguides, such as the microstrip line, the
results can also be used for optical and dielectric waveguides
as discussed in [3].

There are a number of criteria which have to be satisfied
for the transmission line models which we will introduce
here. First, when the waveguide becomes reciprocal, mirroring
and anisotropic the model has to reduce to the classical
transmission line model of [3]. Second, a transmission line
model for a reciprocal waveguide should be reciprocal. Third,
at low frequencies, i.e., in the so-called quasi-TEM limit,
the generalized transmission line model should reduce to the
generalized transmission lines which follow then immediately
from the Maxwell equations as shown in [8].

First, we will construct a single generalized transmission
line model for two oppositely propagating modes in a bi-
directional waveguide. Next, this will be generalized to two
modes in a general nonreciprocal waveguide. Finally, coupled
generalized transmission line models for a number of modes
in general nonreciprocal waveguides are discussed.

A. Single Transmission Line Model for
a Bi-Directional Waveguide

Consider two modes with opposite propagation constants
in a waveguide. In particular this could be two modes in a
reciprocal waveguide such as an asymmetric microstrip line
(Fig. 2) placed on a reciprocal bi-anisotropic substrate. The
fields of both modes are not just mirror images. This means
for example that the longitudinal currents on the microstrip
line for both modes are not just opposite.

We represent the propagation of these modes by a single
reciprocal generalized transmission line

%‘Zﬁ — —Pu(z) - Zi(2), (60)
diz(;) = _Yu(2) + Pi(2). 1)

The quantities P, Y, and Z are the unknowns in this problem.
The modal solutions of this coupled set of equations are found
from the eigenvalue problem

AV =-PV - ZI
—4I ==YV + PI.

(62)
(63)
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The solutions of this eigenvalue problem are given by

vi =+ 2ZY + P? (64)

and
VA

4z - P

From (43) it follows that I, V_ — I_V, does not vanish and
can be used to normalize the eigenmodes

LIV -1-V4) =1,

Vi 1. (65)

(66)

The factor 1/4 in front of this expression is chosen to be in
accordance with [3]. If one eliminates V1 from this equation
using (65) and one solves for Y one finds

a2 B

Y = 67
5 (67)
Similarly if one eliminates I+ and solves for Z one finds
_V.
7 = H;_i (68)

Now we have to make an identification between the modes in
the waveguide and the modes in the circuit model. First, we
demand that the propagation constants ++y in the transmission
line model are equal to those of the modes in the waveguide.
Second, we demand that the currents /. are equal to the
currents on some conductors, for example the longitudinal
currents on the microstrip, of the waveguide. In order to
make this identification the modes in the waveguide and the
transmission line should be normalized in the same way. Since
we already used (66) as a normalization we have to impose
the equivalent normalization for the modes in the waveguide

i / H: o (z, y) X By (2, y)
S

~H; _(z,y) xE; (2, y)]u. dS =1. (69)

Equation (66) (or equivalently (69) in the waveguide) does
not fully determine the amplitudes of the eigenmodes. Indeed
there is only one equation specifying the amplitudes of two
modes. In [3], the extra needed equation arose automatically
from the fact that both modes were mirror images. In this case,
we could use the relations derived in Section III to link the
modes but let us first look at a few more easy and practical
techniques to specify the amplitudes. So in essence we need
one extra equation besides (66) to normalize the modes.
A first possibility would be to impose that

(14 Ve) = £1. (70)

Note that this includes (66) and that this is compatible with
the normalization in [3]. The corresponding normalization in
the waveguide would then be
b [ Mo, ) xBerlo, pludS =41, (1)
s
This fixes the amplitudes of both modes in the waveguide and
in the transmission line. In the RI-model we can now demand

that the currents in the transmission line are the same as for
example on the microstrip line. Let us express the quantities
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Y, Z, and P as a function of the known quantities v, I, and
I_. Equation (67) immediately yields Y as a function of these
known quantities. The impedance Z is obtained from (68) by
elimination of the voltages using (70)

274
7 =— . 72
o (72)
Finally the quantity P follows from (65), using (70)
ZI,1_
P=qy+ 0= =0 (73)

The remarkable result is obtained that P = O under this
normalization.
Let us look at a second possibility by taking as second

normalization the quantity
LV, +1.V_=0. (74)

This normalization is again compatible with [3], i.e., for
mirroring modes this relation is automatically satisfied. The
corresponding normalization for waveguides is

/S[Ht,+($a y) X Bty (2, y)

+H,_(z,9) x By _(z, y)]u. dS =0. (75
The impedance Z and the quantity P are now given by
8y I Iy
L= 76
2+ 20 (76)
and
IZ . I2
P="Z—"TF«,. 77
1_2(, + IE Y4+ ( )

Both (70) and (74) do not automatically lead to the generalized
transmission line model of {8] for low frequencies in the quasi-
TEM limit. A third, and most simple, extra normalization
which will yield a transmission line model compatible with
[8] is

Ve=V_. (78)
In the waveguide this means that we impose that
/Et,+(m, y).dl = /Et7_(x, y).dl (79)
! 1

where [ is a chosen path in the cross-section, typically connect-
ing the microstrip with the substrate. Each path will yield a
different circuit model but in the quasi-TEM limit the integral
becomes path-independent and will reduce to the unique quasi-
TEM model in [8]. The transmission line parameters are now
given by

874
Ty 0
and
Iy +1_

As fourth possibility we can use the link between the modes
in the transmission line derived in Section IV. This means that
[Vi, I+] and [V_, I_] are related by

(5)-( D)

(82)
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with A, B, C, and D given by (55) and (56). If we solve this
set of equations for V, and V_ one finds

(Y +2)2+4P? Y+7
Vi=- - "I
* 2P FTogp I* ®3)
If these expressions are inserted in (66) one finds that
12 _ 1'2
P= - Y + 2). (84)

2,/16 — (I2 — 12)2

If on the other hand the expressions (83) are inserted in the
impedance (68) using (84) then the final expression for Z is
obtained as shown in (85) at the bottom of the page, P follows
then from (84). The major advantage of the transmission line
model derived in this way is that it is the natural extension
of the transmission line model derived in [3] to nonmirroring
modes. The drawback is that the modes in the waveguide have
to be normalized in the same way as in the transmission line
or that these modes have to be linked as described in Section
III where it was shown that this is far from trivial.

B. Single Transmission Line Model for a
Nonbidirectional Waveguide

In this section, we drop the assumption that the two modes
have opposite propagation constants. The modes are modes
in a nonreciprocal waveguide, for example two modes in an
asymmetric microstrip line (Fig. 2) placed on a nonreciprocal
bi-anisotropic substrate. To represent these modes we need a
nonreciprocal generalized transmission line

do(z) =—Pu(z) — Zi(z)

(86)
dz
di(z) _ A

Now there are four unknowns P, Z, Y, and Q. If the modal
representations for the voltage and current are inserted in
these equations the following expression for the propagation
constants is obtained
_P+Q=+ VIP+Q)2-4(PQ-YZ)
== 2

and the relation between the modal voltage and current is given
by ‘
_Z

Y+ — P

(88)

Vi I, (89)

To apply the reciprocity theorem (43) we also need the adjoint
transmission line described by
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The propagation constants for the adjoint system satisfy
fy = —(P+Q)=+/(P+Q)?-4(PQ-YZ)
B 2

and the relation between modal voltage and current now
becomes

92)

. 7.
Vi=o-—1..
¥+ +Q
From the reciprocity theorem (43) we now obtain four relations

between the modal currents and voltages for the original and
adjoint transmission line

93)

LI Vo - vy =1, (94)
LV -1.Vy) =1, (95)
LV, -V, =0, (96)
IV.-I.V.=0 97)

where the two first equations already are used to normalize
the modes. Here and in future normalization equations we
will not explicitly give the corresponding expressions for the
normalizations in the waveguide, these are easily deduced by
the reader. If one eliminates V and V_ from (94) using
(89) and (93) and taking into account that ¥_ = —~,, that
P+@Q =4+~ and that (v — P)(vy — Q) =Y Z, one
can show that

yo r—r )L

) 9%)

If conversely J_ and I are eliminated from (94) the following
expression for the impedance Z is obtained

7 = (v — 7—)V~V+
—

Since there are four modes into play now, we need four
normalization equations to fix the amplitudes of the modes,
this means two extra in addition to (94) and (95). These
normalization expressions will allow us to express Y, Z, P,
and () as a function of the known quantities I+ and 4.

First, we consider the generalization of the normalization
condition (78) to the nonreciprocal case. This gives the fol-
lowing two extra normalization conditions

99

Vi = V. (100)

Using these in combination with (94) and (95) results after
some steps in

d’lNJ(Z) _ . _ 73
) = Qite) - Zi(a), (90) Vo=V V=V = —2 (101)
Iy —I_
di(z) o . and
I ~Yi(z) + Pi(z2). oD fo=1I.. (102)
4,/16 — (I2 = I2)2(I2 + I3) + 32— (I2 - )11
P ( 2 P +B32-( DI 85)

2

(12 —13)?
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These results immediately give us the final expressions for the
admittance Y (98) and impedance Z (99)

y = Or =)ty 74—)IJ+ (103)
Ay — =)
Z =" ¢ 104
(Iy = 1.)? (1o
and from (89) and (93) then follows
Y=Ly — vl
=T 105
P=tr—t (105)
and
Yol — -1
=T 106
Q=TT (106)
respectively.

As second more natural, but less practical, extra set of nor-
malization conditions we use the natural relations between the
modes in the original and adjoint transmission line, discussed
in Section IV. We will restrict ourselves to the results. First
of all it follows that

I, =1, (107)
and

Vi =Va. (108)

This means that Y follows from (98) by removing the tilde.
The impedance is given by (109) shown at the bottom of
the page, and P and @) follow from the observation that
P+Q =~ +~_ and that

2 -12
/16 — (12 — I2)2

C. Coupled Generalized Transmission Line Models

P-Q= (Y +2). (110)

In [3], it was shown that it is relatively easy to generalize
the ordinary single transmission line models for modes in mir-
roring waveguides to coupled transmission lines. In the case
of generalized transmission lines this is no longer trivial as
can be guessed from the complications already encountered in
the single generalized transmission lines. These complications
will not allow us to present closed form expressions for Y. Z,
P, and Q as was possible in [3] for Y and Z.

Assume N modes propagating in each direction in a recipro-
cal waveguide. We represent these modes by the coupled set of
N generalized reciprocal transmission lines (34) and (35). Let
Vi (I4) represent an N x N matrix with on its columns the

N voltages (currents) Vi ;(Ix ,) with ¢ = 1, ---, N. The
propagation constants v, = —y_ are grouped in a N x N
diagonal matrix ¥, = —5_.

In the RI-model we want to determine the parameter ma-
trices Y, Z. and P from the knowledge of the eigenvalues
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¥, and the currents I4. The 2N? currents in I are typically
taken equal to the currents on N conductors of N modes
propagating in the positive direction and N modes propagating
in the negative direction. This requires the normalization of
these modes in the waveguide as well as the set of transmission
lines. From all this we conclude that there are 2N? + N
unknown quantities to be determined from 2N? + N given
quantities and that we need 2N normalization equations for
the modes in the transmission lines and the waveguide.

The relation (44) between the modal voltages and currents
can then be written as

(111)

=PY (1,5, +PTT,)+ 214, (112)
Y (-1 5.+PTT_),
:_1 = P = = prms—
=PY (-I_5,+P"IY+7ZI_. (113)

These equations are not sufficient to determine the parameters
P,Y,and Z. We need to add 2N normalization equations. The
first N normalization equations follow from the reciprocity
relation (43)

+T§_ —IﬁT:V]_) Zﬁ

=l

( (114)

el

where (111) allows elimination of the voltages in this ex-
pression. For the other N normalization equations there are
again different possibilities. For example one could ask that
one voltage of each mode propagating in the positive direction
is equal to a voltage of a mode propagating in the negative
direction or one could use the natural relation between the
modes obtained in Section IV.

Whatever the chosen normalization be, it is not possible to
give a general closed form expression for the parameters P,
Y, and Z as a function of 5 4 and 1. However, in practice the
set (112) and (113) together with the normalization equations
can be solved numerically.

Now consider N modes in a nonreciprocal waveguide.
These are represented by a coupled set of nonreciprocal
transmission lines (34) and (35). All the elements of the Y, Z,
P, and @ matrices are independent and hence there are 4N2
unknowns in this problem. In the RI-model the 2N? currents

e 416 — (I2 + I2)2(12 + I2) + (32— (12 — I2)?)1 1,

4

(7 —I2)2 (109)
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7. and the 2N propagation constants are given quantities
following from the waveguide. This means that there are
2N?% — 2N degrees of freedom left. These can be used to
impose other equivalences between the waveguide and the
transmission lines. For example one could take 2N? — 2N
currents of the adjoint waveguide equal to currents in the
adjoint transmission line, these could be all the nondiagonal

elements of the 7. matrices. Apart from these there are also
4N normalization relations needed to fix the amplitudes of the
modes in the original and adjoint waveguide and transmission
line. 2N normalization relations follow from the normalization
of the Lorentz reciprocity expressions and 2N more follow
from additional relations between the eigenmodes such as the
natural relations discussed in Section IV,

VI. CONCLUSION

A detailed investigation was made of the modal propagation
in a bi-anisotropic waveguide and a set of coupled gener-
alized transmission lines. In particular, the relation between
corresponding modes propagating in opposite directions in
the original and adjoint waveguide and transmission line was
studied. In the second part a relation between some modes in
a waveguide and a set of coupled generalized transmission
lines was constructed. In other words a transmission line
model, based on reciprocity considerations, was constructed
for the propagation in bi-anisotropic waveguides. In particular,
explicit expressions were given for the transmission line
parameters, in single generalized reciprocal and nonreciprocal
transmission lines, as a function of modal quantities in the
waveguide.

APPENDIX A

This appendix contains a glossary of some terms.

Hybrid Waveguide: Waveguide with inhomogeneous cross-
section such as an optical fiber or microstrip line. A coaxial
cable is not hybrid.

Bidirectional Waveguide (Transmission Line): Waveguide
(transmission line) where for each mode propagating in
one direction there is another mode propagating in the other
direction with the same propagation constant.

Mirroring Waveguide (Transmission Line): Bi-directional
waveguide (transmission line) where the modal field pat-
terns (modal currents and voltages) of the two oppositely
propagating modes are equal.

Reciprocal Waveguide (Transmission Line): Waveguide
(transmission line) with reciprocal material (transmission
line) parameters.

Adjoint Waveguide (Transmission Line): Waveguide (trans-
mission line) corresponding to a nonreciprocal waveguide
(transmission line) with reciprocal material (transmission line)
parameters (2)—(5) and (36)—(39). The original and adjoint
waveguide (transmission line) are mutually bi-directional.

Mutually Mirroring Waveguide: Waveguide corresponding
to a nonmirroring waveguide with material parameters
(24)—(27). For each mode in the original waveguide there
is another mode in the mutually mirroring waveguide with
mirrored field patterns.
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APPENDIX B

In this appendix more aspects regarding the determination
of the dyadic operators relating modes propagating in opposite
directions are illustrated for a chiral waveguide. In a chiral
waveguide the modal field patterns satisfy the curl equations

Vi x By = —jwpH u,
+ wr/eopo . u, (115)
~yu, X Bt + Vi x Byu, = —jwuH;
+ wk/€opioEs,
Vi x Hy = jweE u,
+ wky/eopoH 1, (117)
—yu; X Hy + Vi x Hyu, = jweE,
+ wk/egoH;.
If the z-components are eliminated the following expressions

for the operators L;,, (i, j = 1, 2) appearing in (28) can be
verified

(116)

(118)

f11 Ifzz
_?_wm/eouo J
dr  n? oy v

0 WHK/€Eglhg 0
— (_a_a:. _nz—_ 5‘—%’— - wm/eouo> u;u,

8 wk/e€opg O
+ (By 2 8—y - wm/eouo) u,u,
_ 9 wnyeopi 9

dy n? Oz Hyty:

wux

(119)

(120)

where n? = ey — w2eguo and where Ty, follows from Tys

by replacing p with —e.

Now assume that x = 6k is smaill and that we perform
a perturbation analysis, as in (57)—(59), to determine the
perturbated operators A = U + 64, D = U+ 6D, B = 6B,
and C = §C. From the involution requirement follows that
6A = 6§D = 0. Taking only first order terms into account it
follows from (32) that

fn&ﬁ + 5ﬁ2] = ——25%11 120

and

L196C + 6B Loy =—26L11 (122)

where “T” indicates the adjoint operator and where we used
the fact that the L;; operators are self-adjoint. This is a
similar set of equations as in (57) and (58) but now we have
dyadic operators and not matrices. It follows that the anti-
symmetric part of the operators 6B and §C vanishes and that
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the symmetric parts (subscript “S”) satisfy

T126Cs + 6BsLa1 = —26L11. (123)

One possible way to actually solve these equations is to
represent the operators by infinitely dimensional matrices. It is
again clear that the (123) does not fully specify the operators
6B and 6C. The degrees of freedom left could be used to
make the eigenvalues of both operators equal.

Finally we want to remark that for a lossless chiral wave-
guide the transformation

Y=,
E; - Ej,
E. - EZ,
H;, — -H;,

H, ——H". (124)

between the modal field patterns can be verified from
(115)—(118). This transformation however is nonlinear due
to the complex conjugates.

APPENDIX C

In this Appendix, the general solution of the system (53)
and (54) is discussed. First define the 2N x 2N-matrices Z,

@, and J as

- _(P Z
== £ 125
a <Y Q) (125)
-_(A B
T ( ol D) (126)
and .
= 0 U
={ = 127
J (_ T 0 ) (127)
The expression (53) can then be written as
ali5-;3a=0 (128)
The matrix @ can be diagonalized as
T=9d7 " (129)

where  is the matrix with the eigenvectors and d a diagonal
matrix with the 2V eigenvalues of the matrix @. Inserting the

expansion (129) in (128) yields after some manipulations
dZ-3d=0 (130)

with

Sl
2|

(131)

Wl

=573

From (130) it follows that Z is a diagonal matrix. The elements
on the diagonal are not specified by (130). From the involution
condition (54), i.e., T T = @, with T the 2N x 2N unit matrix, it
follows that the eigenvalues of T should be 1. If we express
7 as function of Z, by inverting (131), then the eigenvalues \
of T are solution of

det [(TT)"'Z0 ' = Aj] = 0. (132)
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Since the transposition operator does not change the determi-
nant of a matrix it follows that A is also solution of

det [(FT)"127 " + Aj] = 0. (133)

Hence, if ) is an eigenvalue then also — A is an eigenvalue. If
we demand that N of the eigenvalues A are equal to 1 then the
other N eigenvalues automatically satisfy the condition that
they are equal to —1. This means that the involution condition
only poses IV extra conditions on the 2V diagonal elements of
Zz. This in turn means that the system (53) and (54) has still N
degrees of freedom left. It also follows from (131) that JT is
a symmetric matrix which proves that B and C are symmetric
matrices and that D = —A7T.
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