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Properties of and Generalized Full-
Wave Transmission Line Models for
Hybrid (Bi)(an)isotropic Waveguides

Frank Olyslager, Member, IEEE

Abstract— In this contribution single and coupled equivalent
transmission lines are developed for the propagation of modes
in reciprocal and nonreciprocal, anisotropic, bi-isotropicj and bi-
anisotropic waveguides. The transmission lines are described by
the generalized telegrapher’s equations. In order to develop these
transmission line models some properties, related to reciprocity,
hi-directionality, and mirroring, of general waveguides and gen-
eralized transmission lines are investigated. The transmission line
models are based on the reciprocity theorem and are valid for
arbitrary frequencies.

I. INTRODUCTION

T HE representation of the propagation of modes in a
waveguide by a transmission line in a circuit represen-

tation is in use for, a very long time. For TEM-waveguides,
such as the coaxial cable, this transmission line representa-
tion follows immediately from the Maxwell equations as is
shown in every basic electromagnetic course. Later [1], it
was shown that at low frequencies, i.e., in the quasi-TEM

limit, the transmission line representation is still equivalent
to the propagation of eigenmodes in hybrid multiconductor
waveguides. These hybrid waveguides are nonhomogeneous
and hence do not propagate pure TEM modes. With the appli-
cation of the microstrip line at higher frequencies, where the
quasi-TEM assumption becomes questionable, the need arose
for transmission line models valid at arbitrary frequencies.

Many different solutions for this problem were put forward
in the past. We refer the reader to [2] for an extensive

overview. However, all of these transmission line models
were based on the assumption that the same power has to

be transported in the transmission line as in the waveguide.
In [3], it was shown that this causes inconsistencies for
lossy waveguides. Reciprocal waveguides were represented
by nonreciprocal transmission lines. In [3], new types of
transmission line models were proposed based on the Lorentz
reciprocity principle rather than on the power assumption.
Under this assumption the conservation of reciprocity was
automatically guaranteed. These transmission line models were
then successfully extended to incorporate the influence of
externally impinging waves on the waveguide [4] or to the
interconnection of different waveguides [5]. They were in
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particular applied to wire transmission lines for power lines
[6]. It has to be mentioned also that in [3] the concept
of transmission line modeling, which was classically only
used for multiconductor transmission lines, was extended to
incorporate dielectric and optical waveguides.

The representation of for example a microstrip on a biased
and hence nonreciprocal ferrite substrate by a classical trans-
mission line causes problems. Indeed a classical transmission

line is traditional mirroring and hi-directional [7]. This means

that for each mode propagating in one direction there is
a mode propagating in the other direction with the same
propagation constant (hi-directional) and with the same modal
voltages and currents (mirroring). Remark that our definition
of hi-directionality differs from the one used in [7] where

hi-directionality was reserved for mirroring waveguides. A
glossary defining terms can be found in Appendix A. In
the ferrite situation this is no longer the case. In order to

correctly represent this nonreciprocal waveguide we need
a generalized transmission line. As we will show in this
paper these problems are not restricted to nonreciprocal wave-
guides but similar problems also occur in certain anisotropic
reciprocal waveguides. Again, these waveguides need a gen-
eralized transmission line concept. Generalized transmission
line concepts also come into play when there are hi-isotropic

or bi-anisotropic materials involved in the waveguides. Since

they are important in the optical frequency range and recently
also got a lot of attention in the microwave frequency range,

we will also include them in this paper. In [8] and [9] the
quasi-TEM theory of [1] was generalized to multiconductor
transmission lines in bi-anisotropic inhomogeneous media.
It was shown that the generalized transmission line concept
rigorously followed from the Maxwell equations under the
quasi-TEM assumption.

In this contribution, we will extend the high-frequency
transmission line models developed in [3] to generalized
transmission lines. First, this will require a study of some
aspects of reciprocal and nonreciprocal waveguides and gen-
eralized transmission lines. In particular, the problem of bi-
directionality of reciprocal waveguides will be addressed and
a proof will be given that reciprocal waveguides are bi-
directional although they are not necessary mirroring waveg-
uides. In the previous literature it was almost assumed evident
that a reciprocal waveguide is hi-directional although, in the
most general case, this does not follow immediately from
Maxwell’s equations. In tracing back literature we encoun-
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tered [10] and [11] where a proof was given based on a
network concept for nonreciprocal gyrotropic and anisotropic

media. In the sequel we will comment on that proof. For
nonreciprocal waveguides and transmission lines the concept

of adjoint waveguides and transmission lines is studied. Also
in the first part of the paper the problem of the nonmirroring

property of hi-directional or mutual hi-directional waveguides
is investigated and a relation is constructed between the
modal profiles of two oppositely propagating modes with the
same propagation constant in a waveguide as well as on a

transmission line.

In the second part of the paper the attention goes to
the construction of the actual generalized transmission line

models. First, generalized single transmission line models
for reciprocal and nonreciprocal waveguides are constructed.
These transmission line models are based on the Lorentz
reciprocity theorem. One of the particular problems in these
models is the fixation of the amplitudes of the modes in the
waveguide and the transmission line. This problem has already
been studied in [12] for the plane wave propagation of waves
in nonreciprocal bi-ani sotropic materials. Throughout this pa-

per we will call this fixation of the amplitudes normalization.

Care should however be taken with this normalization because,

as in [3] and [12], we will use a reciprocity integral for

this normalization which is not a norm in the mathematical
sense of the word. In the last part of the paper generalized
coupled transmission line models are studied. In this case,
however, we will not be able to give closed form expressions

parameters compared to the original medium

where the constitutive equations for a general bi-anisotropic
medium are cast in the form

d(r) ==. e(r) + ~. h(r), (6)

b(r) =~. e(r) + ~ ~h(r). (7)

Assume that the a-field is an eigenmode propagating along the
z-axis with propagation constant ~. in a hybrid waveguide.
The modal field can be written as

e.(r) = E.(x, Y) ew (–T. z), (8)

h.(r) = H.(x, y) exp (–~.z). (9)

where E. (z, g) and Ha (z, y) are the modal field patterns.

Similarly assume that the b-field is an eigenmode propagati-
ng in the adjoint waveguide with propagation constant $’b.

Applying the Lorentz reciprocity theorem (1) to a section of
arbitrary length L of the waveguide between z = O and z = L
for these modes, results in

for the transmission line parameters as a function of waveguide
{1 - exp [-(T. + 7~)L]} / [Ht,.(z, v) x fit,~(~, v)quantities. We have to restrict ourselves to implicit formulas s

which require numerical solutions. – tit,~(z, y) X Et,.(z, y)].uZ dS = O
In [2] and [3], different transmission line models were

(lo)

introduced based on the assumption that the current or the
voltage in the transmission line has a physical meaning. The

terms RI-model and RV-model were introduced in [3] to make
the distinction between these current and voltage models,
respectively. The “R’ indicates that the models are not based

on power but rather on reciprocity. In [3], also more general
models, applicable for optical and dielectric waveguides were
introduced. In this paper we will restrict ourselves to RI-

models, the extension to the RV-models is straightforward.

II. RECIPROCITYAND BI-DIRECTIONALITY

If [e~ (r), ha(r)] and [Eb(r), h~(r)] are two solutions of the
Maxwell equations in a source free volume V then they satisfy
the Lorentz reciprocity theorem

/
[ha(r) x e,(r) - h,(r) x e.(r)].un dS = O (1)

6V

where W is the boundary surface of this volume V and where
u~ is the external normal on this surface. This reciprocity
theorem is also valid in nonreciprocal media if the solution
[Gb(r), h~(r)], indicated by a tilde, is a solution of the Maxwell
equations in the adjoint medium in the volume V. The theorem
is easily checked and is a generalization of the one presented
in [13] or [14]. The adjoint medium has reciprocal material

where u. is the z-directed unit vector and where the subscript

“t” denotes the transverse components, i.e., the components
in the cross-section S of the waveguide. The relation (10)
is the generalized orthogonality relation for eigenmodes in
reciprocal and nonreciprocal bi-anisotropic waveguides. The
relation states that when T. # ‘~b the integral has to be zero.

It is easy to show, by reversing the z-axis in Maxwell’s

equations, for anisotropic waveguide that when ~a is a prop-
agation constant of an eigenmode that there is an eigenmode
with propagation constant –~. propagating in the opposite

direction. In general one automatically accepts that this bi-

directionality property can be generalized to arbitrary recip-
rocal bi-anisotropic waveguides. However, it is not possible
to show this property immediately from Maxwell’s equations
by reversing the z-axis (see also next section). In this section
we will give a short proof based on the Lorentz reciprocity
theorem (10). We will prove that the original waveguide and
the adjoint waveguide are mutual hi-directional. This means
that if ‘y. iS a propagation constant that ~b = –’ya is also a
propagation constant in the adjoint waveguide.

First, assume a hybrid wavcguidc consisting of isotropic

material. From Maxwell’s equations it follows immediately, by
reversing the z-axis, that if [Ta,o, 13t, ~, O(Z, Y)i Et, a, O(Z, Y)]
is an eigenmode that also [?b, o = –’y., o, Ht, b,o (z, y) =

–Ht, a, O(Z, Y), fit, L O(Z, y) = Et,.,, O(Z, y)] is an eigenmode.
Inserting these equations in (10) shows of course that the factor
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in front of the integral vanishes and
amplitude of the a mode such that

J~ [Ht, a,o(z, y)x Et, a,o(z,
s

that we can choose the

y)].uZ dS = 1. (11)

Now change the isotropic material parameters in such a

way that they become slightly bi-anisotropic. The material
parameters of the adjoint waveguide are changed accordingly.
This will change the field patterns and propagation constants
of both the a and b modes by a small amount. We write these

modes as [~~,1 = v~,o + ~T~,I, Ht,a,l(z Y) n Ht,a,O(~> Y) +
6H*,G,1($, y), Et,a,l(x, y) = Et,a,o(z, y)+tiEt,a,l(z, g)] and

[?~,l = “Ya,q + ~’%,1,‘tb,l(~> !/) = -Wa,o(z, Y) +
~%~,1(~, Y), %v(r, Y) = %,o(~, v) +~%,u(~, v)]. In-
serting these modes in (10) results after a few calculations
in

{1 - exp [(fi-f.,l + 6~~,l)L]}

[/x 4 + (6H,,a,l x fit,b,O – Ht)b,o x 6J3,a,l).uz ds

L JS

J+ (Ht,a,o X 6E,,)1 - ($Ht,~,l X Etia,o).uz dS
s

/
+ (6Ht,a,I X 6E,)b,I – cfiit,b,, X dEt,a,~).uz dS

s 1= o.

(12)

When the material parameters are only slightly changed, the

second factor in this expression will not vanish because, except
for the fixed term “4,” the other terms in the second factor are
at least of first order in the changes. This means that the first
factor has to be zero, which in turn means that &y.,l = –6fib,~
or that Y.)l = —fi~,l.

In a next step we start from the “a, 1“ and “b, 1“ modes.
First we choose the amplitudes of the modes again such that

/
~ [Ht,a,l(z, y) X Et)~,I(Z, y)

~Ht,b,l(z, y) X Et,a,l(z, y)].UZ dS = 1. (13)

Now we can again change the material parameters by a small
amount and proceed as in (12). By repeating this process over
and over one proves that a bi-anisotropic waveguide and his
adjoint waveguide are mutual hi-directional or in particular
that a reciprocal waveguide is hi-directional.

One could argue why not just take a finite piece of the
reciprocal waveguide and consider the two ends of the guide
as ports to a microwave network as suggested in [10]. Then
attach to one port a transmitter and to the other port a receiver.
The transmitter should convert a voltage or current in a lumped
element to a single mode in the waveguide and vice versa for
the receiver. In a next step both the transmitter and receiver
are interchanged and then from the argument that the same
voltage or current is recorded in the receiver it follows that
the propagation constants are opposite according to [10]. The
problem in this setup is that, as we will discuss in the next
section, the modes propagating in opposite direction can have
totally different modal field profiles. The used transmitter
in the setup however should generate only one mode when
connected to the left and to the right hand side. It may be that

such a transmitter could be conceived but it is certainly not
evident. If the transmitter generates more than one mode then
it is also not evident to draw conclusions regarding one mode.
This discussion puts at least some questions on the proof in

[10]. Remark that the proof in [10] is also restricted to closed

waveguides and gyrotropic anisotropic materials. Our proof
has no need to introduce some network element and follows
directly from Maxwell’s equations via the reciprocity theorem.
Since only the reciprocity theorem is involved the proof
applies to all mutual reciprocal linear eigenvalue systems.

III. RELATION BETWEEN THE MODAL FIELD PATTERNS

In an isotropic waveguide we know that the modal field

patterns of two oppositely propagating modes, with the same

propagation constant, are what we will call mirror images. In-

deed, it can be easily checked that the transformation formulas

7 + –’-)’,

Et ~Et,

Ez ~ –Ez,

H* -+ –Ht,

Hz ~Hz. (14)

transform the Maxwell curl equations into themselves. Now
we wonder for which bi-anisotropic waveguides this mirror
property remains valid. Let us start from the transversal and

longitudinal part of the Maxwell curl equations for the modal
field patterns in a general bi-anisotropic waveguide

~t X Et

= –jwpzzHZuz – jWI&EZUZ – jwpzt . Ht

– jwczt “Et, (15)

–TUZ X Et + ~t X Ezuz
—

= –jW~tt . Ht – jW~tt . Et – jW#JtzHz

– @GzEz , (16)

Vt x Ht

= jwE.. J!?.u. + jwL&H. u. + jw~.t . Et

+ jw& “I%> (17)

–’yUz X Ht + ~t X H.uz
—

= jw?tt . Et + jW& . Ht + jwetzEz

+ jw&zi7z . (18)

The material dyadics are decomposed as

ii = Ct!Zzuzuz+ Uzflzt + atzu. + izt (19)

with a equal to c, p, (, or &. If we insert the mirror transfor-
mation formulas in these equations then the same equations
are obtained only for materials for which
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Fig. 1. A microstrip line on an anisotropic substrate with a symmetry line
in its cross-section. The hatch-dwection indicates the dkection of anisotropy.
Cross-hatched regions are perfect conductors.

It is clear that these material conditions have nothing what-
soever to do with the reciprocity conditions. In particular this
means that certain nonreciprocal waveguides are mirroring and

conversely that the modal field patterns of oppositely propa-
gating modes in certain reciprocal waveguides are not just
mirror images. An important special case of such a reciprocal
waveguide is a waveguide consisting of reciprocal hi-isotropic,
i.e., chit-al, material. We will call a waveguide which satisfies

the conditions (20)–(23) a mirroring waveguide. For each
nonmirroring waveguide there exists a waveguide which is a

mutually mirror waveguide. The material parameters, indicated

by a hat, of this waveguide are given by
,. A

z = :Zzuzuz + Uz:zt + 6.% + Qt

= ezzuzuz — Uzczt — Ctzuz + at, (24)
,,

ii = Lzuzw + U,/l-lzt + k.uz + Gt

= Wzzuzuz – UzPzt – J%w + G, (25)
A .

z = L%% + Uzi.t + it,% + L

= –fzzuzuz + Uz!fzt + (Lzuz – at, (26)
,. A

? = L.%w + Uztzt + ttz% + ?tt

= –<.,%% + %czt + (t,% – ?tt. (27)

Again, when these material parameters coincide with the ma-
terial parameters of the adjoint waveguide for a nonreciprocal
waveguide then there is a mirror relation between a mode prop-
agating in the original waveguide and the corresponding mode
propagating in opposite direction in the adjoint waveguide.

Sometimes there exists a simple relation between modes
propagating in opposite directions due to symmetry in the

geometry of the waveguide. For example when the geometry

contains a symmetry axis in its cross-section [7]. If one just

turns around the waveguide by 180° along this axis, chosen in
one particular cross-section, the same waveguide is obtained.
This means that the oppositely propagating modes are related
to each other by the symmetry of the waveguide. Fig. 1 shows
and example of such a waveguide consisting of a microstrip
line. This means also that nonreciprocal bi-anisotropic waveg-
uides become hi-directional as soon as they have a symmetry
axis in their cross-section. Similar conclusions can be drawn
when the cross-section of the waveguide contains a symmetry
center.

One could ask if there exists a natural relation between the
field patterns of modes propagating in opposite direction with
the same propagation constant in the adjoint waveguide. The
answer is that one can indeed construct such a relation but
that it is far from trivial. For a solution [T., Et,.,l%,.]we

can formally write the eigensystem (1 5)–(1 8), by eliminating

the z-components, as

‘G’:)=ka(%) ’28)
where ~ij, (i, j = 1, 2) are complicated two-dimensional (2-
D) dyadic vector operators. For explicit expressions for chiral
materials we refer to Appendix B. A solution [~~, Et,6, l%t,bJ
of the adjoint waveguide satisfies

“($:)=(i: k)(2:) ‘2’)
where the operators ~ij are obtained from the operators ~,j

by replacing the material parameters with the adjoint material
parameters (2)–(5). Now we impose a linear operator relation
between each solution [T., Et,., Ht,a] in the orig~nal w~ve-

guide and the corresponding solution [~b = –Y., E~,~, :Ht,b]
in the adjoint waveguide

(30)

..—.
where A, B, C, and D are linear dyadic operators. If one
inserts this in both sides of the adjoint eigensystem (29) and
demands that the result reduces to the original eigensystem
then one finds

If this has to be valid for all eigenmodes in the original

waveguide then this means that we can write the following
operator equation

We also demand that the linear transformation (30) is an
involution

W)(W=(W ’33)
.

where the dyadic operators ~ are unit operators. The solution
of this set of operator equations (32) and (33) is difficult. In
Appendix B the way to construct a solution is indicated for
the special case of a chiral waveguide.

IV. GENERALIZED TRANSMISSION LINES

A coupled set of ~ generalized transmission lines is de-

scribed by the generalized telegrapher’s equations

dv(z)
— = –Fv(z) – 71(2),

d.z
(34)

d(z)

dz
— = –FV(2) – al(z) (35)
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where v(z) and i(z) are column matrices with the’ IV voltages
&nd=cugents of_the different lines. The iV x iV matrices
Z, Y, P, and ~ are the transmission line parameters. The
properties of Iosslessness and reciprocity are discussed in [8].
In r)articular it was shown that these transmission lines are

Suppose that [v. (z), i.(z)] is a solution of the transmission
line (34) and (35) and suppose that [tib(.z), &(z)] is an

independent solution of the adjoint transmission line. The
adjoint transmission line has parameters given by

This proves that the original and adjoint set of transmission
lines are mutual hi-directional and in particular, corresponding
to the result in [8], that reciprocal generalized transmission
lines are hi-directional.

In general it can be checked, as for the waveguides, that the
modal voltages and currents of a mode and the voltages and
currents of the corresponding mode in the adjoint waveguide
with the same propagation constant but propagating in the

opposite direction are not just mirror images. They are mirror
images only under the conditions that

Z=ZT (36) Z==ZT, (47)

F=YT (37) ?=FT (48)

and

(38) and
(49)

~=_~T
(39) For reciprocal transmission lines this means that ~ and 5

vanish or that the transmission lines reduce to ordinary trans-
it is now easy to verify that the following relation holds . .
between the a and b solution in each source free region of ‘lsslon lines”
the original and adjoint transmission line

Again, the question arises if one can construct a natural lin-
ear relation between the modal voltages and currents of these

~ [i. ‘(~)~b(~) - & ‘(~)v.(~)] = (). (40) oppositely propagating modes when the relations (47)–(49) are
not satisfied. This relation can be written as

This is the equivalent, although in differential form, for

transmission lines of the Lorentz reciprocity relation (1) for

waveguides. (l)=@ ~)(::) ’50)

As&me that the a solution is a mode with propagation f
constant -y. in the set of transmission lines described by

or all modes a and corresponding modes b with fib = –T.. If
one inserts this in both sides of the adjoint eigenvalue system

v.(z) = Va exp (–7.z), (41) of (44) and demand that this reduces to the original eigenvalue

i.(z) =1. exp (–T.z) (42) system (44) then one finds

where Va and 1. are the modal voltage and current patterns.
Similarly let the b solution be a mode propagating in the ( ‘$ -:Z)6 ~)(:)”
adjoint set of transmission lines with propagation constant fib.
Expanding (40) for these modal solutions and integrating from -’a@ 0(:)

(51)

z = O to z = L along the transmission lines results in
for all modes a. Using the diagonalization of the matrix

{1 - e~p [-(?. + ?~)L]}(l~v~ - lFV.) = 0. (43)

This relation is the bi-orthogonality relation for modes in
( -)

~z

(52)
generalized transmission lines. If y. # ‘~b then the second ~Q
factor in (43) has to be zero.

If the modal representations (41) and (42) are inserted in
it is easy to show that (51) can be written compactly as

(34) and (35) then the following linear eigenvalue system is

obtained for the modes

-’(2)=-E ?)(::) ’44)

( ‘$; -~~) 6 ~)=

-6 ~)~ $)
(53)

The corresponding eigenvalue equation is given by
Further we demand that the transformation (50) is an involu-

(

det F –_~au z

)

tion, i.e.,
T

~_7a~ =0 (45)

where u is the IV x N unit matrix. Now by some matrix (33)G ~)=c 0 “4)
manipulations it is easy to show that (45) also implies that

The analytical solution of the system of (53) and (54) is rather

det
( )

-q:+-la~ =~T = =0.

FT –PT+%U
(46) cumbersome and is discussed in Appendix C. Let us look here

at two special cases.
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The solution for a single generalized transmission line is

easily found

A=–D
Y+z—

/(y + 2)2+ (P - Q)’
and

B=(7
P–Q———

{(y + 2)2+ (P - Q)’

(55)

(56)

where we had the freedom to choose 13 = C. Remark that
when P = Q = O the mirror transformation for the modal

currents and voltages is recovered.

As second special case we consider the perturbation solution

for a generalized transmission line with small parameters ~— —
and ~, i.e., with ~ = 6P and ~ = 6Q and ~ and ~ symmetries.

Since the solution for ~ = ~ = O is given by ~ = –~ = ~

and ~ = ~ = O the solution for small tip and 66 will be of

If we insert these forms in (54) and keep only first order terms

one finds already that 61 = 85 = O. Equation (53) yields

(57)

and

(zj– (5FT=7(57P+ Cmlz. (58)

By adding and subtracting these equations one concludes that

the asymmetric parts of 65 and 65 vanish and that the

symmetric parts, indicated by a subscript “S,” satisfy

(59)

This is a linear set of lV2 equations with N’ + N unknowns.
The N degrees of freedom left can be chosen at will, for

example one could choose the same eigenvalues for 65 and

6E.
From the general case discussed in Appendix C we can

draw the following conclusions. The system (53~and (54) has

still N degrees of freedom left, the matrices ~ and ~ are

symmetric matrices and ~ = –~ T.

V. TRANSMISSION LINE MODELS

By comparing previous sections a large analogy between

the modes in a waveguide and the modes in a coupled set of
transmission lines becomes appment. Our aim is to construct a
transmission line model which as good as possible represents
the propagation of a certain number of modes in a waveguide.
In [3], transmission line models were constructed for modes
in reciprocal mirroring anisotropic waveguides. Now we want

to extend these models to general not necessary reciprocal bi-

anisotropic waveguides. To understand the full background of
these transmission line models the reader is referred to [3]. The
main point in [3] ‘was that transmission line models should
be based on reciprocity rather than on power assumptions.
Indeed it was shown in [3], that power based transmission
line models for lossy reciprocal waveguides are nonreciprocal
which is intolerable.

substrate

*
Fig. 2. A microstrip line with asymmetric trapezoidal cross-section.

In [3], different possible transmission line models were
constructed such as RI-models, RV-models and more ftmda-

mental models taking into account the true interaction with the
generator and receiver. Here we will concentrate ourselves on

RI-models, i.e., transmission line models where the currents in

the transmission lines correspond to currents in the waveguide.
The other models are easily deduced from the RI-model as
in [3]. Although we will concentrate on the RI-model for

multiconductor waveguides, such as the microstrip line, the
results can also be used for optical and dielectric waveguides
as discussed in [3],

There are a number of criteria which have to be satisfied
for the transmission line models which we will introduce
here. First, when the waveguide becomes reciprocal, mirroring

and anisotropic the model ‘has to reduce to the classical
transmission line model of [3]. Second, a transmission line
model for a reciprocal waveguide should be reciprocal. Third,
at low frequencies, i.e., in the so-called quasi-TEM limit,
the generalized transmission line model should reduce to the
generalized transmission lines which follow then immediately
from the Maxwell equations as shown in [8].

First, we will construct a single generalized transmission

line model for two oppositely propagating modes in a bi-
directional waveguide. Next, this will be generalized to two
modes in a general nonreciprocal waveguide. Finally, coupled

generalized transmission line models for a number of modes
in general nonreciprocal waveguides are discussed.

A. Single Transmission Line Model for
a Bi-Directional Waveguide

Consider two modes with opposite propagation constants

in a waveguide. In particular this could be two modes in a
reciprocal waveguide such as an asymmetric microstrip line

(Fig. 2) placed on a reciprocal bi-anisotropic substrate. The
fields of both modes are not just mirror images. This means
for example that the longitudinal currents on the microstrip
line for both modes are not just opposite.

We represent the propagation of these modes by a single
reciprocal generalized transmission line

dv(z)
— = –Pv(z) – Zi(z),

d.z
di(z)
— – –Yv(z) + Pi(z).

d.z –

(60)

(61)

The quantities P, Y, and Z are the unknowns in this problem.
The modal solutions of this coupled set of equations are found
from the eigenvalue problem

–~V = –PV – ZI (62)

–71 = –YV + PI. (63)
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The solutions of this eigenvalue problem are given by

~+ =#zY+P2 (64)

and
z

v+=— I*. (65)
Y*– P

From (43) it follows that 1+ V_ – I_ V+ does not vanish and

can be used to normalize the eigenmodes

* (I+v_– I_V+)= 1. (66)

The factor 1/4 in front of this expression is chosen to be in
accordance with [3]. If one eliminates V+ from this equation
using (65) and one solves for Y one finds

y = _T+I_I+

2“
(67)

Similarly if one eliminates If and solves for Z one finds

(68)

Now we have to make an identification between the modes in
the waveguide and the modes in the circuit model. First, we
demand that the propagation constants +y in the transmission
line model are equal to those of the modes in the waveguide.

Second. we demand that the currents I& are equal to the
currents on some conductors, for example the longitudinal
currents on the microstrip, of the waveguide. In order to
make this identification the modes in the waveguide and the
transmission line should be normalized in the same way. Since
we already used (66) as a normalization we have to impose
the equivalent normalization for the modes in the waveguide

/
~ ~ [H,,+ (z, g) X E,,-(x, y)

– Ht,_(x, y) X E,,+(z, y)],uz dS = 1. (69)

Equation (66) (or equivalently (69) in the waveguide) does
not fully determine the amplitudes of the eigenmodes. Indeed
there is only one equation specifying the amplitudes of two
modes. In [3], the extra needed equation arose automatically
from the fact that both modes were mirror images. In this case,
we could use the relations derived in Section III to link the
modes but let us first look at a few more easy and practical
techniques to specify the amplitudes. So in essence we need
one extra equation besides (66) to normalize the modes,

A first possibility would be to impose that

;(I+V+)= +1. (70)

Note that this includes (66) and that this is compatible with
the normalization in [3]. The corresponding normalization in
the waveguide would then be

J; [H,,*(.z, y) X Et,=(z, y)].uz dS = +1. (71)
s

This fixes the amplitudes of both modes in the waveguide and
in the transmission line. In the RI-model we can now demand
that the currents in the transmission line are the same as for
example on the microstrip line. Let us express the quantities

Y, Z, and P as a function of the known quantities y+, I+, and
1–. Equation (67) immediately yields Y as a function of these
known quantities. The impedance Z is obtained from (68) by
elimination of the voltages using (70)

z=-~. (72)

Finally the quantity P follows from (65), using (70)

ZI+I_ = o
P=7++T . (73)

The remarkable result is obtained that P = O under this
normalization.

Let us look at a second possibility by taking as second
normalization the quantity

I+v++ I_v-= o. (74)

This normalization is again compatible with [3], i.e., for

mirroring modes this relation is automatically satisfied. The

corresponding normalization for waveguides is

/
[Ht,+(z, Y) x Et,+(~>Y)

s

+ Ht, -(z, y) X Et,-(z, y)].uz dS = O. (75)

The impedance Z and the quantity P are now given by

87+1.I+
z =-(g +~3)2

(76)

(77)

Both (70) and (74) do not automatically lead to the generalized
transmission line model of [8] for low frequencies in the quasi-
TEM limit. A third, and most simple, extra normalization

which will yield a transmission line model compatible with

[8] is

V+= v-. (78)

In the waveguide this means that we impose that

/
Et,+(z, y).dl =

/
E,)-(z, y).d (79)

1 1

where 1 is a chosen path in the cross-section, typically connect-
ing the microstrip with the substrate. Each path will yield a
different circuit model but in the quasi-TEM limit the integral

becomes path-independent and will reduce to the unique quasi-

TEM model in [8], The transmission line parameters are now
given by

z=(1+:1-)2
p= I++ I-7+.

I–– I+

(80)

(81)

As fourth possibility we can use the link between the modes
in the transmission line derived in Section IV. This means that
[V+,1+]and [V-,1-]are related by

(82)



OLYSLAGER PROPERTIES OF HYBRID (BI)(AN)ISOTROPIC WAVEGUIDES
2071

with A, B, C, and Dgivenby (55) and (56). If we solve this

set of equations for V+ and V– one finds

v*=–~
(Y+ z)’ + 4P2 ~ _Y+z

2P T w“” ’83)

If these expressions are inserted in (66) one finds that

‘= ‘a ‘y+”)” ’84)

If on the other hand the expressions (83) are inserted in the

impedance (68) using (84) then the final expression for Z is
obtained as shown in (85) at the bottom of the page, P follows

then from (84). The major advantage of the transmission line
model derived in this way is that it is the natural extension
of the transmission line model derived in [3] to nonmirroring
modes. The drawback is that the modes in the waveguide have
to be normalized in the same way as in the transmission line
or that these modes have to be linked as described in Section
III where it was shown that this is far from trivial.

B. Single Transmission Line Model for a

Nonbidirectional Waveguide

In this section, we drop the assumption that the two modes
have opposite propagation constants. The modes are modes
in a nonreciprocal waveguide, for example two modes in an
asymmetric microstrip line (Fig. 2) placed on a nonreciprocal
bi-anisotropic substrate. To represent these modes we need a
nonreciprocal generalized transmission line

dv(,z)
— = –PIJ(z) – “i(z)

d,z
di(z)
— = –Yv(z) – Qi(,z).

dz

(86)

(87)

Now there are four unknowns P, Z, Y, and Q. If the modal
representations for the voltage and current are inserted in
these equations the following expression for the propagation
constants is obtained

P+ Q+/(P+Q)2–4(PQ– Yz)
7* =

2
(88)

and the relation between the modal voltage and current is given
by

(89)

To apply the reciprocity theorem (43) we also need the adjoint
transmission line described by

dti(.z)
— = Qti(,z) – Z;(z),

d.z

d;(z)

dz
— = -Yti(z) + P;(z).

(90)

(91)

The propagation constants for the adjoint system satisfy

-(P + Q) + ~(f’ + Q)2 - 4(f’Q - Y“)7* =
2

and the relation between modal voltage and current

becomes

(92)

now

(93)

From the reciprocity theorem (43) we now obtain four relations

between the modal currents and voltages for the original and

adjoint transmission line

+(I+V– –Lv+) =1, (94)

WV- - ~-~+) =1, (95)

I+V+ – f+V+ =0, (96)

I-v_ –f_v_ =0 (97)

where the two first equations already are used to normalize
the modes. Here and in future normalization equations we

will not explicitly give the corresponding expressions for the
normalizations in the waveguide, these are easily deduced by

the reader. If one eliminates V+ and ~– from (94) using

(89) and (93) and taking into account that ~- = –~+, that

P + Q = v+ + v- and that (T+ – P)(T+ – Q) = YZ, one
can show that

y = _(T+– 7-)f_I+
4“

(98)

If conversely ~_ and 1+ are eliminated from (94) the following
expression for the impedance Z is obtained

z = (7+- 7-)V.V+
4“

(99)

Since there are four modes into play now, we need four
normalization equations to fix the amplitudes of the modes,
this means two extra in addition to (94) and (95). These
normalization expressions will allow us to express Y, Z, P,

and Q as a function of the known quantities I& and T+.
First, we consider the generalization of the normalization

condition (78) to the nonreciprocal case. This gives the fol-
lowing two extra normalization conditions

V* = v+. (loo)

Using these in combination with (94) and (95) results after
some steps in

v+=v_=T7+= v_= 4

1+ – I.
(101)

and

~h =I&. (102)

~
4 16 – (12 – 12)2(1: + 1:) + [32 – (1: – I:)2]I_I+

“=$
(I3 - 1:)2

(85)
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These results immediately give us the final expressions for the
admittance Y (98) and impedance Z (99)

y = _(7+ - %)~-~+
4

(103)

z = 4(7+ –~.)

(1+ - 1-)’
(104)

and from (89) and (93) then follows

~ = T-I+– ~+I_
I+– I_

and

(105)

(106)

respectively.
As second more natural, but less practical, extra set of nor-

malization conditions we use the natural relations between the
modes in the original and adjoint transmission line, discussed
in Section IV. We will restrict ourselves to the results, First
of all it follows that

f+ = I* (107)

and

v+ =V+. (108)

This means that Y follows from (98) by removing the tilde.
The impedance is given by (109) shown at the bottom of

the page, and P and Q follow from the observation that

P+ Q= T++ T_ and that

I!– 1:

‘-Q’~(y+ z)” ‘110)

C. Coupled Generalized Transmission Line Models

In [3], it was shown that it is relatively easy to generalize

the ordinary single transmission line models for modes in mir-
roring waveguides to coupled transmission lines. In the case

of generalized transmission lines this is no longer trivial as
can be guessed from the complications already encountered in
the single generalized transmission lines. These complications

will not allow us to present closed form expressions for ~, ~,

~, and ~ as was possible in [3] for ~ and ~.
Assume N modes propagating in each direction in a recipro-

cal waveguide. We represent these modes by the coupled set of
N generalized reciprocal transmission lines (34) and (35). Let

~~ (~+) represent an N x N matrix with on its columns the
N voltages (currents) V+, ~(1+,,) with i = 1, . . . . N. The
propagation constants T+ = –y_ are grouped in a N x N
diagonal matrix ~+ = –~_.

In the RI-model we want to determine the parameter ma-— —
trices ~, Z. and ~ from the knowledge of the eigenvalues

~+ and the currents ~~. The 2N2 currents in ~+ are typically
taken equal to the currents on N conductors of N modes

propagating in the positive direction and N modes propagating

in the negative direction. This requires the normalization of

these modes in the waveguide as well as the set of transmission

lines. From all this we conclude that there are 2N2 + N

unknown quantities to be determined from 2N2 + N given

quantities and that we need 2N normalization equations for

the modes in the transmission lines and the waveguide.

The relation (44) between the modal voltages and currents

can then be written as

Elimination of the voltages ~t from these equations yields

+ ZI+ , (112)

-)+m_. (113)

These equations are not sufficient to determine the parameters

~, ~, and ~. We need to add 2N normalization equations. The

first N normalization equations follow from the reciprocity

relation (43)

+(7+‘v_ -7- w+)= 17 (114)

where (11 1) allows elimination of the voltages in this ex-

pression. For the other N normalization equations there are

again different possibilities. For example one could ask that

one voltage of each mode propagating in the positive direction

is equal to a voltage of a mode propagating in the negative

direction or one could use the natural relation between the

modes obtained in Section IV.

Whatever the chosen normalization be, it is not possible to

give a general closed form expression for the parameters >,

~, and ~ as a function of ?+ and ?*. However, in practice the

set (11 2) and (113) together with the normalization equations
can be solved numerically.

Now consider N modes in a nonreciprocal waveguide.

These are represented by a coupled set of nonreciprocal

transmission lines (34) and (35). All the elements of the ~, ~,

~, and ~ matrices are independent and hence there are 4N2

unknowns in this problem. In the RI-model the 2N2 currents

(109)
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~h and the 2N propagation constants are given quantities

following from the waveguide. This means that there are

2N2 – 2N degrees of freedom left. These can be used to

impose other equivalences between the waveguide and the

transmission lines. For example one could take 2N2 – 2N
currents of the adjoint waveguide equal to currents in the
adjoint transmission line, these could be all the nondiagonal

—
elements of the ~+ matrices. Apart from these there are also
4N normalization relations needed to fix the amplitudes of the
modes in the original and adjoint waveguide and transmission
line. 2N normalization relations follow from the normalization

of the Lorentz reciprocity expressions and 2N more follow
from additional relations between the eigenmodes such as the
natural relations discussed in Section IV,

VI. CONCLUSION

A detailed investigation was made of the modal propagation
in a bi-anisotropic waveguide and a set of coupled gener-
alized transmission lines. In particular, the relation between
corresponding modes propagating in opposite directions in

the original and adjoint waveguide and transmission line was
studied. In the second part a relation between some modes in

a waveguide and a set of coupled generalized transmission

lines was constructed. In other words a transmission line

model, based on reciprocity considerations, was constructed

for the propagation in bi-anisotropic waveguides. In particular,
expIicit expressions were given for the transmission line
parameters, in single generalized reciprocal and nonreciprocal
transmission lines, as a function of modal quantities in the
waveguide.

APPENDIX A

This appendix contains a glossary of some terms.
Hybrid Waveguide: Waveguide with inhomogeneous cross-

section such as an optical fiber or microstrip line. A coaxial
cable is not hybrid.

Bidirectional Waveguide (Transmission Line): Waveguide
(transmission line) where for each mode propagating in
one direction there is another mode propagating in the other
direction with the same propagation constant.

Mirroring Waveguide (Transmission Line}: Bi-directional

waveguide (transmission line) where the modal field pat-

terns (modal currents and voltages) of the two oppositely
propagating modes are equal.

Reciprocal Waveguide (Transmission Line): Waveguide
(transmission line) with reciprocal material (transmission
line) parameters.

Adjoint Waveguide (Transmission Line): Waveguide (trans-
mission line) corresponding to a nonreciprocal waveguide
(transmission line) with reciprocal material (transmission line)
parameters (2)–(5) and (36)–(39). The original and adjoint
waveguide (transmission line) are mutually hi-directional.

Mutually Mirroring Waveguide: Waveguide corresponding
to a nonmirroring waveguide with material parameters
(24)-(27). For each mode in the original waveguide there
is another mode in the mutually mirroring waveguide with
mirrored field patterns.

APPENDIX B

In this appendix more aspects regarding the determination

of the dyadic operators relating modes propagating in opposite

directions are illustrated for a chiral waveguide. In a chiral

waveguide the modal field patterns satisfy the curl equations

vt X Et = –jW@ZU2

+ WK/@i@ZUZ, (115)

–~Uz X Et + vt X ~ZUZ = –jwp,Ht

+ w@6FoEt, (116)

Vt X Ht = jWCEzUz

+ wK@Hzuz, (117)

–~UZ X Ht + Vt X HZUZ = jwcEt

i- wK/@6Ht. (118)

If the z-components are eliminated the following expressions

for the operators ~i~, (i, j = 1, 2) appeting in (28) can be
verified

-(d Wl+ijiii a
13x n2 G– )

WKW %uy

(8jwp a— )~ > ~ +jw/1 %uy

(

a jwp d
+ ‘——

Oy n2 tly )
+ jwp Uyu.

8 j’w,u t?
——— —

~y n2 ~x ‘Y”y

(119)

(120)

— —
where n2 = CM — K2 Copo and where ~21 follows from ~lz
by replacing ,u with –c.

Now assume that K = 6K is small and that we perform

a ~erturbation analvsis. as in (57)–(59). to determine the

.
and ~ = 6~’. From the involution requirement follows that

8~ = 8E = O. Taking only first order terms into account it
follows from (32) that

and

(121)

Z126ET+ 6ZTZ21= –26711 (122)

where “T” indicates the adjoint operator and where we used—
the fact that the ~ij operators are self-adjoint. This is a

similar set of equations as in (57) and (58) but now we have
dyadic operators and not matrices It follows that the anti-—
symmetric part of the operators 66’ and 6C vanishes and that
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the symmetric parts (subscript “S’) satisfy

Zlyscs + 6ZST21 = –2rsz11 . (123)

One possible way to actually solve these equations is to
represent the operators by infinitely dimensional matrices. It is
again clear that the (123) does not fully specify the operators

65 and 85. The degrees of freedom left could be used to

make the eigenvalues of both operators equal.

Finally we want to remark that for a lossless chiral wave-
guide the transformation

between the modal field patterns can be verified from
(115)-(1 18). This transformation however is nonlinear due

to the complex conjugates.

APPENDIX C

In this Appendix, the general solution of the system (53)
and (54) is discussed. First define the 2N x 21V-matrices ~,—
Z, and ~ as

and

(125)

(126)

(127)

The expression (53) can then be written as

XT== ===

a jx— Jxa=O. (128)

The matrix = can be diagonalized as

—=__ 1
ii=vd~ (129)

—
where ~ is the matrix with the eigenvectors and ~ a diagonal
matrix with the 2N eigenvalues of the matrix =. Inserting the
expansion (129) in (128) yields after some manipulations

From (130) it follows that ~ is a diagonal matrix. The elements
on the diagonal are not specified by (130). From the involution————
condition (54), i.e., x x = ti, with ~ the 2iV x 2N unit matrix, it
follows that the eigenvalttes of ~ should be +1. If we express
~ as function of ~, by inverting (131), then the eigenvalues A
of Z are solution of

det [(~~)–1>~–1 – ~~1 = (). (132). . , -, ./

Since the transposition operator does not change the determi-
nant of a matrix it follows that A is also solution of

det [(5T)-1>5-1 + Aj] = O. (133)

Hence, if A is an eigenvaltte then also –J is an eigenvalue. If

we demand that N of the eigenvalues A are equal to 1 then the
other N eigenvalues automatically satisfy the condition that

they are equal to – 1. This means that the involution condition
only poses N extra conditions on the 2N diagonal elements of
=. This in turn means that the system (53) and (54) has still N

degrees of freedom left. It also follows from (131) that ~ x 1s
+=.

— .
a symmetric matrix which proves that 1? and C are symmetric

matrices and that ~ = –~ T.
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